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Abstract
A unified approach to describing all the stages of a nonequilibrium first-order
phase transition is proposed based on the analogy with the decomposition of
a supersaturated solid solution without using the generalized thermodynamic
potential. Expressions for the asymptotic particle size distribution function for
the new phase at the late transition stages, as well as for the critical particle
radius are obtained.

1. Introduction

Semiconductors with a renormalized bandgap present considerable theoretical and practical
interest for optoelectronics applications [1–3]. The most remarkable feature in such a system
is the photoinduced phase transition, that is a dramatic change in absorption coefficient,
hence in the conduction band electron concentration for critical incident intensities [4].
The photoinduced phase transitions are expected to be observable in widegap cooled
semiconductors such as CdS and ZnSe [2–4].

The essential feature of the photoinduced phase transition is its nonequilibrium nature,
although it is similar to first-order phase transition. An adequate description of the kinetics of
nonequilibrium phase transitions is a fundamental problem in physics. The evolution of a new
phase is known to proceed in two stages. The initial stage involves growth of separate nuclei
of a new phase, and is closely related to the mechanisms of their formation [5]. The late stage
involves further growth of larger nuclei at the expense of smaller nuclei [6]. These two stages
are usually treated separately, although the same kinetic equation is used in both cases.

The purpose of the present paper is to present an approach that would describe the above
two stages in a unified manner, in terms of the photoinduced phase transition on the surface of
a semiconductor with renormalized bandgap.

It is known that concentration fluctuations may result in formation of a nucleus of a new,
strongly absorbing phase. It is shown that under certain conditions this nucleus will be in
unstable equilibrium with the weakly absorbing environment. It is shown that at late stages of
a nonequilibrium kinetic transition the behaviour of nuclei resembles that of Ostwald ripening.
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2. Physical model and basic equations

Let the surface (z = 0) of a semiconductor wafer having thickness l be illuminated by a broad
beam with photon energy just below bandgap and uniform intensity I0. The radiative transfer
equations for a laser beam with intensity I , photocarrier density n(x, y, z, t) will be given by

∂I

∂z
= −α(ω, n)I (1)

∂n

∂t
= D⊥

(
∂2n

∂x2
+
∂2n

∂y2

)
− Dz

∂2n

∂z2
+ α(ω, n)I (z) − n

τ
(2)

where α(ω, n), D⊥, Dz are the absorption coefficient and the carrier diffusion coefficients
along and across the wafer, respectively, and τ is the photocarrier lifetime. The longitudinal
inhomogeneity of carriers density distribution is associated with inhomogeneity of light
absorption, and the cross inhomogeneity of carrier density distribution is associated to natural
inhomogeneity of a semiconductor wafer. The absorption coefficient behaviour as a function
of radiation frequency depends appreciably on the difference (h̄ω − E∗

g ), where E∗
g is the

bandgap.
The intraband absorption is assumed to be constant,

α(ω, n) = α1 (3)

and weak, α1 � α0. The frequency dependence of the absorption coefficient α(ω, n) for direct
interband transitions is given by

α(ω, n) = α2(ω, n) = α0

√
h̄ω − E∗

g

Eg

(4)

where α0 is a constant. For beam intensities high enough to to give rise to correlation effects,
the bandgap will be renormalized to

E∗
g = Eg(1 − cn) (5)

where the concentration coefficient of the bandgap is given by c = E−1
g ∂|Eg|/∂n.

For sufficiently high intensities I > Ic, explicit incorporation of E∗
g = E∗

g(n) into the
absorption coefficient will result in concentration nonlinearity of absorption, i.e. in an abrupt
absorption increase. This permits the absorption coefficient to be replaced by a step function
in the sharp absorption edge limit [1]

α(ω, n) = α1 + θ(n − nc)(α2 − α1) (6)

where nc is the critical photoelectron concentration for the onset of correlation effects.
Absorption will continue to increase until filling of states becomes significant.

The physical model of a semiconductor with a strongly nonlinear absorption due to
bandgap narrowing with increasing density of photocarriers given by equations (1)–(5), has
been used by the present authors [7] to evaluate the effect of laser fluctuations on multimodal
electron and hole distributions. In the problem there are two reference lengths: the diffusion
length Lz = Dzτ and length of light absorption �(ω, n) = α−1(ω, n), for which is supposed
the requirementLz � � � l. Taking this into account, for the solution of combined equations
(1) and (2) we search for an expansion on the small parameter �/L � 1

n(x, y, l/2 ± z) = n(x, y, l/2) ± (l/2 − z)
∂n

∂z
|(x,y,l/2) ± . . .

where the quantity n(x, y, l/2) is the mean photocarrier concentration on the wafer thickness
and does not depend on coordinate z. Viewing only order zero in concentration and introducing
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the intensity value averaged over the wafer thickness, we obtain a nonlinear equation for
generation–recombination balance.

dn

dt
= D�n + I0l

−1{1 − exp[−α(ω, n)l]} − n

τ
(7)

where � = ∂2/∂x2 + ∂2/∂y2, D ≡ D⊥.
For a fixed incident light frequency, equation (7) becomes

dη

dθ
= δ�′η + β{1 − exp[−λ1 − θ(η − η0)(λ(�(1 + η))1/2 − λ1)]} − η = δ�′η + f (η) (8)

where η = n/nc, θ = t/τ , β = I0τn
−1
c l−1, λ = α0l, λ1 = α1l, � = (h̄ω − Eg)/Eg ,

δ = Dτn−1
c l2,�′ = ∂2/∂(x/l)2+∂2/∂(y/l)2 = ∂2/∂x ′2+∂2/∂y ′2 are dimensionless variables.

3. Growth rate of a nucleus of a new phase

For a steady-state and uniform case, equation (8) can have one, two or three solutions,
depending on the magnitude of the parameteric variable β (see figure 1). In the latter
case, equation (8) has two stable steady-state uniform solutions η1 and η3, and an unstable
intermediate solution. Physically, each stable solution can be related to a phase, and the
unstable state to a transition point. This enables one to make use of the notions of the theory
of phase transitions. Thus, only one phase will be present to the left of η1 and to the right of
η3, while between these solutions, the two phases will coexist.

In the region where the two phases coexist, the low-absorption phase will be stable, and
the high-absorption phase unstable to the left of the transition point, while to the right of
this point, the reverse is true. In extended bistable systems, the stable steady-state uniform

Figure 1. Plot of function f (η) for various parameters β.
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solutions (in this case, the low-absorption phase η1 and the high-absorption phase η3) are
coupled through a switching wave which is a self-similar solution of a nonuniform equation
(equation (8)). We now evaluate the velocity of a two-dimensional circular switching wave
which we will view as a nucleus of a new phase on the semiconductor surface.

The position of the front boundary of the two-dimensional circular wave is determined
by the coordinate r , for which the instantaneous concentration value n2 will correspond to an
unstable (intermediate) steady-state solution η2,

n(r, t) = n2. (9)

Differentiating equation (9), one obtains

dn

dr

∂r

∂t
+
∂n

∂t
= 0. (10)

Multiplying equation (10) by τ/n0, we thus obtain from equation (10),

∂η

∂R

dR

dθ
+
∂η

∂θ
= 0 (11)

where R stands for r/ l.
In cylindrical coordinates, equation (8) will become

dη

dθ
= δ

ρ

∂η

∂ρ
+ δ

∂2η

∂ρ2
+ β{1 − exp[−λ1 − θ(η − η0)(λ(�(1 + η))1/2 − λ1)]} − η (12)

where ρ =
√
x ′2 + y ′2 is the dimensionless space coordinate.

Multiplying equation (12) by ∂η/∂ρ and integrating between η1 and η3, we obtain [8]∫ ∞

0

[
−∂η/∂θ

∂η/∂ρ
+
δ

ρ

] (
∂η

∂ρ

)2

dρ

=
∫ η3

η1

(β{1 − exp[−λ1 − θ(η − η0)(λ(�(1 + η))1/2 − λ1)]} − η) dη. (13)

The derivative ∂η/∂ρ gives a sharp peak near the wavefront boundary ρ = R, so that an
approximate relation[
−∂η/∂θ

∂η/∂ρ
+
δ

ρ

] ∫ ∞

0

(
∂η

∂ρ

)2

dρ

=
∫ η3

η1

(β{1 − exp[−λ1 − θ(η − η0)(λ(�(1 + η))1/2 − λ1)]} − η) dη (14)

can be written. Using equation (10), one then obtains

dR

dθ
= µ − δ

R
. (15)

Equation (15) is valid under the thin wall approximation. Here, µ is assumed to be given
by

µ =
∫ η3

η1

(β{1−exp[−λ1 −θ(η−η0)(λ(�(1+η))1/2 −λ1)]}−η) dη

( ∫ ∞

ρ2

(
∂η

∂ρ

)2

dρ

)−1

(16)

which stands for the velocity of the plane wave front of the switching wave (R → ∞). It
follows from the steady-state condition of the wavefront boundary R that

RC = A−1δ

∫ ∞

ρ2

(
∂η

∂ρ

)2

dρ = δ

µ
(17)
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where

A =
∫ η3

η1

(β{1 − exp[−λ1 − θ(η − η0)(λ(�(1 + η))1/2 − λ1)]} − η) dη (18)

has the same meaning as the degree of supersaturation in semiconductor solid solutions. With
equation (17) taken into account, equation (15) becomes

dR

dθ
= δ

(
1

RC

− 1

R

)
. (19)

For R > RC , dR/dθ , and the nuclei of the high-absorption phase of radius R will grow,
while for R < RC , dR/dθ < 0, and the nuclei will dissolve. The nuclei of critical radius
RC , which are in equilibrium with the environment, will neither grow nor dissolve. Since no
restrictions on A have been placed, equation (19) will be formally valid for both early and late
stages of growth of the new phase.

4. Behaviour of nuclei of the new phase at late stages of a photoinduced phase transition

At late stages of the first-order phase transition the growth of larger nuclei of a new phase
proceeds at the expense of dissolving smaller nuclei [10–12]. For the case in question, Ostwald
ripening sets in when A tends to zero. In other words, a developed interface is generated in a
nonequilibrium system which is related to the Ostwald ripening stage [6]. We note, however
that at this stage the fluctuation mechanism of formation of a new phase is ruled out because
the critical sizes of nuclei are too large.

Equation (19), which represents the growth rate of a strongly absorbing phase, can then
be rewritten as

dR

dθ
= δ

R

[
R

RC

− 1

]
. (20)

It is identical to the expression for late stages of formation of a discontinuous film from a
supersaturated solid solution of atoms, adsorbed on a substrate [13]. According to Wagner [12]
and Vengrenovich [13], δ can be viewed as a constant describing the rate of particle arrival
at the perimeter of a growing droplet. As can be easily seen, for the case in question, its
magnitude is determined by the diffusion coefficient of electrons and their lifetime.

Following Vengrenovich [14, 15], we determine the maximum possible nucleus size Rg

using the equation for specific growth rate.

d

dR

(
Ṙ

R

) ∣∣∣∣
R=Rg

= 0 (21)

where Ṙ ≡ ∂R/∂θ .
It follows from equation (21) that Rg = 2RC . Note that Lifshits–Slezhov theory gives

Rg = 3
2RC for particles growing by bulk diffusion. Using equation (20) one can easily obtain

the time dependence of Rg

R2
g − R2

g0 = 2δ(θ − θ0) (22)

Assuming dR/dθ to be the velocity of a nucleus in the size space, we can write the
continuity equation in this space as

∂g

∂θ
+

∂

∂R

(
g
∂R

∂θ

)
= 0. (23)
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The nucleus size distribution function is normalized so that

N(θ) =
∫ Rg

0
g(θ, R) dR (24)

which is the number of nuclei per unit volume.
Finally, the law of conservation of the number of charge carriers is given by

A(θ) + π

∫ Rg

0
R2g(θ, R) dR = A0 (25)

where A0 has the same meaning as the initial supersaturation in semiconductor solid solutions.
The expressions (20), (23) and (25) make a complete set of equations for the problem

in question. Substituting equation (20) into equation (23) we obtain a distribution function
similar to that obtained earlier for a discontinuous film [13],

g(u) = Cu(2 − u)−4 exp

(
− 4

2 − u

)
(26)

where u = R/RC .
The normalizing constant C can be obtained from equation (25).
Apparently, the above given nucleus size distribution function does not cover all possible

mechanisms of particle coarsening. To account for other mechanisms, e.g. diffusion toward
the particle, one would have to make assumptions that do not follow directly from the physical
model described in section 2.

5. Conclusion

We have demonstrated a unified approach to nucleus formation and later stages of condensation,
i.e. Ostwald ripening, as applied to photoinduced phase transition on the surface of a
semiconductor with a renormalized bandgap for a strongly nonequilibrium system. When
considering the kinetics of the nonequilibrium phase transition only those assumptions have
been made that follow directly from the physical model representing the system in question.

The proposed approach is also applicable to a broad range of nonequilibrium systems. The
latest achievements in the theory of self-organizing systems are known to be due to the fact that
thermodynamically nonequilibrium systems which are stationary and exhibit local equilibria
are formally indistinguishable from the equilibrium systems [8] for which well developed
mathematical apparatus is available [9]. Such a thermodynamical system, which is far from
equilibrium, is dependent upon its characteristic function, i.e. the generalized thermodynamic
potential [16–18].

However, in most physically meaningful situations encountered in nonequilibrium kinetics
(e.g. the model described by equation (6)) the above method is not applicable because of the
difficulties associated with the construction of the generalized thermodynamical potential. The
approach proposed here enables one to describe the evolution of a strongly nonequilibrium
system using a formal analogy with decomposition of a supersaturated solid solution without
invoking the generalized thermodynamical potential.

The bistable behaviour of a semiconductor with self-induced dramatic increase of the
absorption coefficient has been studied extensively [1, 2, 7, 18] with a view to produce
an optically bistable system. The similarity of this absorption increase to the first-order
phase transition has been pointed out repeatedly. However, for zero-dimensional and one-
dimensional models no in-depth similarity can be observed, as no adequate concept of a nucleus
of a new phase can be introduced. For the cylindrical symmetry case under consideration,
such similarity arises in a natural way, and allows us to formally, in a unified manner, describe



Semiconductor with renormalized bandgap 2953

the growth of both spontaneously emerging nuclei of the strongly absorbing phase and their
Ostwald ripening, i.e. the final stage of transition.
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